Intervue featured on Shark TankIntervue featured on Shark Tank - mobile banner

Range Sum Query 2D

Given a 2D matrix `matrix`, find the sum of the elements inside the rectangle defined by its upper left corner `(row1, col1)` and lower right corner `(row2, col2)`.

Constraints:

  • 1 <= matrix.length <= 200
  • 1 <= matrix[0].length <= 200
  • 0 <= row1 <= row2 < matrix.length
  • 0 <= col1 <= col2 < matrix[0].length

Examples:

Input: [[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]

Output: 8

Explanation: Sum of elements in the rectangle from (2, 1) to (4, 3) is 8 (i.e., 1 + 7 + 0).

Solutions

Prefix Sum

Time: O(1)Space: O(m * n)

We use a prefix sum array `dp` where `dp[i][j]` is the sum of all elements in the rectangle from `(0, 0)` to `(i - 1, j - 1)`. We can then calculate the sum of the elements in the rectangle from `(row1, col1)` to `(row2, col2)` as `dp[row2 + 1][col2 + 1] - dp[row2 + 1][col1] - dp[row1][col2 + 1] + dp[row1][col1]`.


class NumMatrix:

    def __init__(self, matrix):
        self.dp = [[0] * (len(matrix[0]) + 1) for _ in range(len(matrix) + 1)] for i in range(1, len(matrix) + 1):
            for j in range(1, len(matrix[0]) + 1):
                self.dp[i][j] = self.dp[i - 1][j] + self.dp[i][j - 1] - self.dp[i - 1][j - 1] + matrix[i - 1][j - 1]
                def sumRegion(self, row1, col1, row2, col2):
                    return self.dp[row2 + 1][col2 + 1] - self.dp[row2 + 1][col1] - self.dp[row1][col2 + 1] + self.dp[row1][col1]

Difficulty: Medium

Category: Array, Dynamic Programming, Prefix Sum

Frequency: High

Company tags:

GoogleAmazonMicrosoft