Graph Valid Tree
Given n nodes labeled from 0 to n-1 and a list of undirected edges (each edge is a pair of nodes), write a function to check if these edges make up a valid tree.
Constraints:
- 1 <= n <= 10^5
- 0 <= edges.length <= 10^5
- edges[i].length == 2
- 0 <= edges[i][0], edges[i][1] < n
Examples:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
Output: true
Explanation: The given edges form a valid tree because they connect all nodes and do not contain any cycles.
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
Output: false
Explanation: The given edges do not form a valid tree because they contain a cycle (1-2-3-1).
Solutions
Union-Find
The Union-Find approach is used to solve this problem. We initialize the parent array with each node as its own parent and the rank array with all zeros. We then iterate over the edges and check if the two nodes of each edge are in the same set. If they are, we return false because a cycle is detected. Otherwise, we union the two sets. Finally, we check if all nodes are in the same set by finding the parent of each node and adding it to a set. If the size of the set is 1, it means all nodes are in the same set and we return true. Otherwise, we return false.
function validTree(n, edges) {
let parent = Array(n)
.fill(0)
.map((_, i) => i);
let rank = Array(n).fill(0);
function find(x) {
if (parent[x] !== x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
function union(x, y) {
let rootX = find(x);
let rootY = find(y);
if (rootX !== rootY) {
if (rank[rootX] > rank[rootY]) {
parent[rootY] = rootX;
} else if (rank[rootX] < rank[rootY]) {
parent[rootX] = rootY;
} else {
parent[rootY] = rootX;
rank[rootX]++;
}
}
}
for (let [x, y] of edges) {
if (find(x) === find(y)) {
return false;
}
union(x, y);
}
let set = new Set();
for (let i = 0; i < n; i++) {
set.add(find(i));
}
return set.size === 1;
}
Follow-up:
How would you optimize the solution if the number of nodes is very large?