Intervue featured on Shark TankIntervue featured on Shark Tank - mobile banner

Median of Two Sorted Arrays

Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.

Constraints:

  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -10^6 <= nums1[i], nums2[i] <= 10^6

Examples:

Input: nums1 = [1,3], nums2 = [2]

Output: 2.00000

Explanation: merged array = [1,2,3] and median is 2

Input: nums1 = [1,2], nums2 = [3,4]

Output: 2.5

Explanation: merged array = [1,2,3,4] and median is (2 + 3)/2 = 2.5

Solutions

Binary Search

Time: O(log(min(m,n)))Space: O(1)

We use binary search to find the partition point for both arrays. The idea is to partition both arrays such that elements on the left side of the partition are less than the elements on the right side. We calculate the max element on the left side and the min element on the right side. If the max element on the left side is less than or equal to the min element on the right side, we have found the correct partition. If the total number of elements is even, the median is the average of the max element on the left side and the min element on the right side. If the total number of elements is odd, the median is the max element on the left side.


class Solution {
  
  public: double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
    int m = nums1.size(), n = nums2.size());
    if (m > n) return findMedianSortedArrays(nums2, nums1);
    int low = 0, high = m;
    while (low <= high) {
      int partitionX = (low + high) / 2;
      int partitionY = (m + n + 1) / 2 - partitionX;
      int maxLeftX = (partitionX == 0) ? INT_MIN : nums1[partitionX - 1];
      int minRightX = (partitionX == m) ? INT_MAX : nums1[partitionX];
      int maxLeftY = (partitionY == 0) ? INT_MIN : nums2[partitionY - 1];
      int minRightY = (partitionY == n) ? INT_MAX : nums2[partitionY];
      if (maxLeftX <= minRightY && maxLeftY <= minRightX) {
        if ((m + n) % 2 == 0) {
          return (double)(max(maxLeftX, maxLeftY) + min(minRightX, minRightY)) / 2;
        }
        else {
          return (double)max(maxLeftX, maxLeftY);
        }
        else if (maxLeftX > minRightY) {
          high = partitionX - 1;
        }
        else {
          low = partitionX + 1;
        }
      }
    }
  }

Difficulty: Hard

Category: Arrays and Strings

Frequency: Very High

Company tags:

GoogleAmazonMicrosoft