Intervue featured on Shark TankIntervue featured on Shark Tank - mobile banner

Maximum Sum Circular Subarray

Given a circular array (the last element is connected to the first element), find the maximum contiguous subarray sum.

Constraints:

  • 1 <= nums.length <= 10^4
  • -10^5 <= nums[i] <= 10^5

Examples:

Input: [5,-3,5]

Output: 10

Explanation: The maximum sum is obtained by taking the subarray [5, -3, 5] which has a sum of 5 + (-3) + 5 = 7. However, since the array is circular, we can also consider the subarray [5, -3, 5] as [5] + [-3, 5] which has a sum of 5 + (-3 + 5) = 7. But the maximum sum is actually obtained by taking the subarray [5, -3, 5] as [-3, 5] + [5] which has a sum of (-3 + 5) + 5 = 7. So the maximum sum is 10 which is obtained by taking the subarray [5, -3, 5] as [5] + [5, -3].

Solutions

Kadane's Algorithm

Time: O(n)Space: O(1)

The solution uses Kadane's algorithm to find the maximum sum of a subarray. It first calculates the maximum sum of a subarray using Kadane's algorithm. Then it calculates the maximum sum of a wrapped subarray by subtracting the minimum sum of a subarray from the total sum of the array.

int maxSubarraySumCircular(vector<int>& nums) {
  int maxKadane = kadane(nums);
  int maxWrapped = 0;
  for (int i = 0;
  i < nums.size();
  i++) {
    maxWrapped += nums[i];
  }
  int maxSum = maxWrapped;
  for (int i = 0;
  i < nums.size();
  i++) {
    maxWrapped -= nums[i];
    maxSum = max(maxSum, maxWrapped);
  }
  return max(maxKadane, maxSum);
}
int kadane(vector<int>& nums) {
  int maxSoFar = nums[0];
  int maxEndingHere = nums[0];
  for (int i = 1;
  i < nums.size();
  i++) {
    maxEndingHere = max(nums[i], maxEndingHere + nums[i]);
    maxSoFar = max(maxSoFar, maxEndingHere);
  }
  return maxSoFar;
}

Difficulty: Medium

Category: Array

Frequency: High

Company tags:

GoogleAmazonMicrosoft